ANTONIO NAVARRA

THE CLIMATE CHALLENGE

Who we are

The Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (Fondazione CMCC) is a nonprofit research institution. CMCC's mission is to investigate and model our climate system and its interactions with society to provide reliable, rigorous, and timely scientific results, which will in turn stimulate sustainable growth, protect the environment, and develop science driven adaptation and mitigation policies in a changing climate.

Global Surface Temperature

The CMCC–CM2 model

SEASONAL

The ensemble forecast production

CMIP

Centro Euro-Mediterraneo sul Cambiamenti Climatici		CMCC-CM2-SR5	CMCC-CM2-HR4	CMCC-CM2-VHR4	CMCC-ESM2-SR5	CMCC-ESM2-HR5	
		Climate model <u>Standard</u> - CAM5 Atm(1° x 1°) Ocn(1° x 1°)	Climate model <u>High Res.</u> - CAM4 Atm (1° x 1°) Ocn (¼° x ¼°)	Climate model <u>Very</u> <u>High</u> - CAM4 Atm (¼° x ¼°) Ocn (¼° x ¼°)	Earth system <u>Standard</u> - CAM5 Atm(1° x 1°) Ocn(1° x 1°)	Earth system <u>High Res.</u> - CAM5 Atm(1° x 1°) Ocn(¼° x ¼°)	
Deck 1001 yrs (control= 500, amip=36, 1%=150, 4x=150 + hist=165)		- 1001 yrs	1001 yrs	-	2002 yrs (conc & esm)	315 yrs (1% and hist)	
MIPs	HighResMIP (AMIP=100; CPL-CTRL=100; CPL-Trans=100)	-	300 yrs	300 yrs	-	-	
	DCPP-C + DCPP-A	1500 yrs	-	-	-	-	
	C4MIP (use DECK and ScenarioMIP)	-	-	-	-	-	
	LS3MIP	-	-	-	500 yrs	-	
	LUMIP	-	-	-	500 yrs	-	
	OMIP (CORE-II protocol - NO Atm)	-	300 yrs	-	300 yrs	-	
	ScenarioMIP (SSP5-8.5, SSP3-7.0, SSP2-4.5, SSP1-2.6 -> 85 yrs each)	340 yrs	-	-	680 yrs (conc & esm)	<mark>85 yrs</mark> (only SSP5-8.5)	
	GMMIP (amip-hist=145 x 3 members)	435 yrs	-	-	-	-	
	SIMIP (use DECK and ScenarioMIP)	-	-	-	-	-	
	CORDEX (use DECK and ScenarioMIP)	-	-	-	-	-	
Total		2076+1500=3576	1601	300	3982	400	9859

Current climate simulation

DJF and JJA mean SST for CMCC-CM2 and differences with HadISST

Cherchi et al. 2018

From Climate to Impacts

Data projection on Italy (NUTS3): mean temperature

Data projection on Italy (NUTS3): number of days with maximum temperature over 35°C

Data projection on Italy (NUTS3): annual precipitation

Knowing the impacts

The NAP presents a index risk at provincial scale, which takes into the account both expected impacts and adaptation the capacity of each province.

Knowing the impacts

The final outcome of this analysis is a risk map at provincial scale, where the impacts (ranked from low to very high) are related to the adaptation capacity (from high to low)

Ocean Predictions and Applications Big data challenge

THE OCEAN ACTIVITIES AT CMCC

GOFS16: A GLOBAL OCEAN FORECAST SYSTEM AT EDDY RESOLUTION

The Global Ocean Forecasting System GOFS16

<u>Mesh:</u>

Tripolar grid [180°W-180°E; 78°S-90°N] with 1/16° (6.9 km) horizontal spacing at the equator (increasing poleward to ~2 km) and 98 vertical levels with partial step Grid size: 5762 × 3963 × 98 points Bathymetry:

ETOPO2 for the deep ocean, GEBCO for the continental shelves, BEDMAP2 for Antarctica region

Atmospheric Forcing:

Operational NCEP analyses and forecasts; bulk CORE formulation

Land river runoff:

Monthly climatology from Dai et al. 2009 + Antarctic freshwater fluxes (Jacobs et al. 1992)

<u>GOFS16</u>

NEMO v3.4

Circulation Ocean Modeling System coupled to LIM2 EVP sea ice model (Iovino et al. 2016)

Data Assimilation Scheme

OceanVar (Storto and Masina, 2016): threedimensional variational (3Dvar) data assimilation scheme with updates from multiple data sources and nudging schemes for surface temperature and sea ice concentration

Operational Chain:

The chain consists of daily cycle of a **7-day-long forecast, initialized by a former (daily) analysis.** At each cycle, the chain starts one day back, assimilates all observations available for that day and runs nowcast and forecast afterwards.

Assimilated Observations:

In-situ T/S profiles from CMEMS In-Situ TAC: XBT, CTD, Argo, moorings, marine mammals (roughly 3º × 3º resolution) Along-track satellite altimetry observations from CMEMS SL TAC: Jason-2, Altika, CryoSat2 (~1/4º resolution) SST data from Metop-A/AVHRR and GCOM-W/AMSR-2 (up to ~ 3-4 km resolution), SSS relaxation toward NOAA 1/4º Analyses (15 days) Sea ice concentration satellite data processed by NCEP

Products:

1-day ASYS, 1-day SIMU, 7-days FCST for **3D** Temperature, Salinity, Currents and **2D** SSH, Sea Ice Thickness, Concentration and Drift **Time series: from 2017-ongoing**

The Mediterranean and Black Sea systems in the frame of Copernicus Marine Environment and Monitoring Service

Med-MFC Physics Analysis and Forecast System

Vertical, Temporal and Spatial variability of T, S, SLA RMS misfits

•Larger error at thermocline, which decreases at lower layers

Salinity RMS mifits at 8m [PSU]

BS-MFC Physics Analysis and Forecast System

Atmospheric Forcing

ECMWF 1/8° forecast/analysis fields time resolution: 3/6 hrs: mean sea level pressure, cloud cover, 2m relative humidity, 2m air temperature, 10m zonal and meridional wind components GPCP precipitation (climatological monthly mean)

Assimilated Observations

Along track satellite SLA from CMEMS SL-TAC, for all available satellites: Jason 2/2N/3 , Cryosat2, AltiKa, Sentinel3 Sea Surface Temperature SST L4 from CMEMS SST TAC Vertical profiles of ARGO T and S from CMEMS In-Situ TAC

Black Sea Near Real Time System

NEMO v3.4 Circulation Ocean Modeling System 1/36x1/27 horiz. res. 31 vert. levels

Data Assimilation

3DVar Satellite and InSitu observations are jointly assimilated using a 3DVAR assimilation scheme with a daily assimilation cycle. Non-solar heat flux correction is achieved through satellite SST nudging

Initial Conditions: T/S January monthly climatology Surface Boundary Condition

The Bosporus Strait is modeled as water volume flux and provided as surface boundary condition, calculating a steady state barotropic transport as in Stanev et al. (2000) and Peneva et al. (2001) Land river runoff input from SESAME project database (climatological monthly mean)

Products

3/14-day ASYS, 1-day SIMU, 10-day FCST for 3D: Temperature, Salinity, Currents D: SSH, MLD, Bottom Temperature Temporal frequency: Daily and Hourly averages Time series: from 2016-ongoing

COPERNICUS MARINE ENVIRONMENT MONITORING SERVICE Providing PRODUCTS and SERVICES for all marine applications

Unstructured-grid and seamless cross-scale modelling

FROM THE GLOBAL TO THE LOCAL SCALES

Unstructured-grid and seamless cross-scale modelling

Nowdays, numerical modelling system based on <u>unstructured-grid</u> codes and <u>seamless</u> <u>cross-scale</u> approach needs a treatment of large amount of data both to be ingested and then <u>SIOPLER</u> approach fully baroclinic finite element model (Umgiesser et al., 2004) Designing Operational Forecasting

Unstructured-grid and seamless cross-scale modelling

Nowdays, numerical modelling system based on <u>unstructured-grid</u> codes and <u>seamless</u> <u>cross-scale</u> approach needs a treatment of large amount of data both to be ingested and then

SCIENCE, THE ENDLESS